Mostrando entradas con la etiqueta Gemmata obscuriglobus. Mostrar todas las entradas
Mostrando entradas con la etiqueta Gemmata obscuriglobus. Mostrar todas las entradas

viernes, 27 de diciembre de 2019

Cómo se generan las simbiosis: lecciones de Prometheoarchaeum


La bacteria pulpoPrometheoarchaeum syntrophicum
. Fuente
Prometheoarchaeum syntrophicum strain MK-D1 es una arqueobacteria del grupo Asgard. Un grupo de científicos japoneses, después de 12 años de intentarlo, han conseguido aislarla de los sedimentos marinos y cultivarla en laboratorio, lo cual abre las puertas a la experimentación científica. ¿Por qué es tan interesante esta bacteria? porque crece mejor si está en asociación con otras bacterias. Además, forma tentáculos con los que puede atrapar a las bacterias que se volverán sus compañeras, formando así relaciones simbióticas con ellas.

Si tenemos un modelo bacteriano de simbiosis podremos empezar a hacerles preguntas. Es una pena porque ya han existido modelos semejantes, por ejemplo el de las amebas y la bacteria X del científico surcoreano Jeon. En este modelo se puede observar cómo las bacterias X y las amebas acaban formando una simbiosis perfecta, en donde las bacterias necesitan a la ameba pero la ameba no puede vivir sin ellas. En este blog ya le dediqué una entrada.

Bacterias que nos enseñan que la teoría endosimbiótica de Lynn Margulis está en lo cierto existen algunas, como Gemmata obscuriglobus. Esta bacteria es una Gram negativa pero que carece de péptidoglicano. Una especie de eslabón perdido. Sería algo así como el paso de las arqueobacterias a las Gram negativas.

Esta bacteria es muy interesante porque al no tener peptidoglicano no tiene una presión interna elevada y su membrana crea compartimentos similares a los que tiene la célula eucariota. De hecho se cree que las invaginaciones de la membrana plasmática de esta bacteria serían como un preambulo del núcleo celular.
Si bien, las bacterias son generalmente clasificados como procariotas,
es decir, ausentes de membrana nuclear, siempre existen excepciones, como Gemmata obscuriglobus, una bacteria, que presenta compartimentos internos,
como una membrana intracitoplasmática y una membrana nuclear. Fuente: Nature
¿Qué aprenderemos de Prometheoarchaeum?

Hace unos meses me acerqué con mi compañera Hégira Ramírez a la mezquita de Quito (y no, no es un juego de palabras). Me regalaron varios libros, uno de ellos el siguiente:
La primera parte del libro está escrita con bastante rigor, los últimos capítulos el autor se relaja bastante. El argumento principal fue básicamente el que me repitieron los dos imanes (religiosos musulmanes, nada que ver con el magnetismo): la Biblia había sido escrita y traducida por hombres mientras que el Corán era la transcripción literal de las palabras de Dios. De esta manera, se justifica la línea evolutiva en al que primero el Dios de Abraham habla exclusivamente para las tribus judías, posteriormente, su hijo, también Dios para los cristianos, simplemente un profeta, para los musulmanes, expande el compromiso divino a otros pueblos además del hebreo. Allah, hablando por la boca del profeta Mahoma decide acabar con las múltiples interpretaciones del mensaje divino con un texto al que no se le puede cambiar ni una coma. De esa manera, el Corán lleva sin modificaciones más de 1400 años.

Quizás todo esto sea mentira desde un punto de vista factual, es decir, que no hay hechos reales que lo corroboren. Aunque sea factualmente inexacto es socialmente exacto. En el libro de Caraballo se muestra cómo existen en la Biblia algunos pasajes muy contradictorios. Esto originó en el pasado luchas entre los distintos clanes. Hoy en día, el cristianismo sigue dividido en múltiples facciones. Frente a esto se opone la unidad del islam. Obviamente esto no es del todo cierto porque también en el islam hay distintos clanes y facciones.

Podemos ver estudiando la historia de las religiones como hay dos fuerzas contrapuestas: la unidad y el deseo de formar una unidad aparte. Entender este tipo de gramática de cómo se generan los grupos es importante porque está en la base de nuestros conflictos armados. Conocer la verdad es importante, pero también lo es permanecer a una tribu. Si estos dos deseos no entran en conflicto perfecto. Si no lo hacen... las consecuencias son terribles.

Estudiando bacterias como Prometheoarchaeum y como genera simbiosis con otras bacterias nos permitirá aprender el abc, la gramática de cómo nos organizamos en grupos de una manera científica, basada en hechos. Existen otros modelos para entender la lógica de grupos en bacterias, como por ejemplo Myxococcus xantus, pero Promethearchaeum nos muestra cómo se establecen vínculos indisolubles entre bacterias muy distintas entre si. Lo que necesitamos para limar asperezas entre grupos radicales.

Para saber más:

Como siempre, la entrada sobre Prometheoarchaeum del investigador Manuel Sánchez, son mucho más didácticas e interesantes que las mías.

H. Imachi et al., Isolation of an archaeon at the prokaryote-eukaryote interface, bioRxiv, 6 August 2019

E. Pennisi, Tentacled microbe hints at how simple cells became complex, Science, Vol. 365, p. 631, 16 August 2019

https://www.newscientist.com/article/2213037-deep-sea-microbe-could-answer-one-of-evolutions-biggest-mysteries/

sábado, 4 de mayo de 2019

Gemmata obscuriglobus: pionera en compartimentar el citoplasma

 Gemmata obscuriglobus Gram-negativa sin peptidoglicano

Gemmata obscuriglobus carece de peptidoglicano ¿Qué quiere decir esto? bien, si la función primaria del peptidoglicano es impedir que la presión interna de la bacteria la haga explotar, esto quiere decir que esta especie carece de la presión interna característica de las eubacterias (Gram-positiva y Gram-negativas). Por tanto, podemos deducir que Gemmata obscuriglobus carece de la característica presión de turgor. Quizás por ese motivo esta bacteria no es un simple saco rodeado con una malla de peptidoglicano como la mayoría de las eubacterias
Fig. 1. Las ollas a presión alcanzan las 3 atmósferas de presión. Los distintos tipos de eubacterias tienen presiones de turgor diferentes dependiendo del espesor de su capa de peptidoglicano. Así las Gram-negativas pueden tener entre 0,8 y 5 atm. y las Gram-positivas entre 15 y 25 atm. Fuente

La invaginaciones de la membrana plasmática son un preámbulo del núcleo celular

En el modelo más aceptado de los posibles pasos que ocurrieron en la evolución de las células eucariotas, incluyendo el origen de las mitocondrias y los cloroplastos por endosimbiosis, está el origen del núcleo por invaginación de la membrana plasmática.

Fig. 2. A Una procariota anaerobia y heterotrófica capta a una procariota aerobia pequeña. Existe pruebas de que el organismo fagocitado fue un ancestro de las rickettsias actuales. B el endosimbionte aerobio evolucionó a una mitocondria. C una porción de la membrana plasmática se invaginó y formó el precursor de la envoltura nuclear y el retículo endoplasmático adyacente. D La membrana nuclear va centralizando los genes de la célula que antes estaban adheridos a la membrana plasmática y la mayoría de los genes que estaban en el interior del cromosoma de la mitocondria. La mitocondria todavía retiene un pequeño cromosoma circular con algunos genes. La explicación es porque las proteínas de esos genes son necesarias en el interior de esa misma mitocondria y energéticamente es más favorable poder sintetizarlas en el lugar en donde se necesitan.

Fig. 3. Micrografía electrónica (arriba) y reconstrucción tridimensional (abajo) de Gemmata obscuriglobus. Esta reconstrucción sugiere que el interior de la bacteria está muy dividada por membranas. Estas membranas están abiertas, es decir, no generan compartimentos estancos. La membrana externa (recordemos que es una Gram-negativa) está en verde, la interna en cian, el ADN en amarillo, el depósito de polifosfatos en azul y las cavitaciones en la membrana en rosa. La barra de escala = 500 nm. Fuente

Recientemente, se ha encontrado estructuras en forma de poro en las membranas internas de esta bacteria que son semejantes a los poros de la membrana nuclear de las células eucariotas.
Fig. 4. Multiples estructuras similares al poro nuclear de eucariotas sobre la membrana de Gemmata obscuriglobus. Para obtener esta foto se lisaron las bacterias y se tiñeron negativamente para microscopía electrónica de transmisión. El poro más grande tiene anillos concentricos internos y externos muy similares a la organización del poro nuclear de las células eucariotas. Fuente