jueves, 18 de enero de 2018

Las bacterias tienen también dos sistemas inmunológicos

Los animales superiores tenemos dos sistemas inmunológicos: el innato y el adquirido. El innato es un sistema que, cuando detecta moléculas que existen de forma genérica en las bacterias o en virus pero que no existen en nosotros. Cuando una bacteria o un virus entran en nuestro organismo el sistema innato se pone en marcha para erradicarlos. El sistema inmune adquirido o adaptativo es el que está mediado por anticuerpos. Es una respuesta específica contra todo aquello que no estaban previamente en nuestro cuerpo: protozoos, bacterias, virus y cualquier molécula que este sistema no reconozca como propia. Es una respuesta inmunitaria que produce memoria inmunológica que te protege después de haber estado en contacto con el elemento extraño. Es la memoria inmunológica que activan las vacunas.

Las bacterias también tienen dos sistemas inmunológicos, innato, es decir, genérico y adaptativo, o específico. Como las bacterias son organismos unicelulares, su sistema inmunológico es intracelular. Además su tamaño tan pequeño hace que sólo se tengan que preocupar de no ser invadidas por organismos más pequeños que ellas, como los virus o los plásmidos.

Los plásmidos son como pequeños cromosomas de ADN circular. Tienen la capacidad de producir una especie de pene de proteína para pasar de una bacteria a otra. Obviamente, todo en biología es más rico y más complejo, pero en este momento estoy haciendo una descripción de brocha gorda.
Detalle al microscopio electrónico de un pili conjugativo, que no es otra cosa que un pene de proteína, que se establece entre dos bacterias. Los plásmidos utilizan estos penes para pasar de una bacteria a otra.
Los virus de bacterias, llamados bacteriófagos, es decir comedores de bacterias y a los que,  a partir de ahora, les llamaremos fagos, son distintos a los virus humanos. Los virus humanos entran dentro de la célula humana y allí se desnudan y su ADN o ARN, depende de la clase de virus se copia muchas veces hasta que se encapsidan de nuevo listos para romper la célula e infectar otras. Los fagos inyectan su ADN o ARN dentro de la bacteria porque las bacterias están a presión y no podrían engullir al virus como hacen las células humanas. Por ese motivo, los fagos tienen una forma distinta, una forma que recuerda a una mezcla de mosquito y bomba de hinchar las ruedas de la bicicleta.

Como lo único que entra en la bacteria es ADN o ARN es por eso que sus sistema inmune está especializado en destruir ácidos nucleicos extraños. El sistema inmune innato de bacterias son las enzimas de restricción y el sistema inmune adaptativo es el sistema CRISPR-Cas

Una tijera de ADN para eliminarlos a todos

Las enzimas de restricción son proteínas que cortan ADN. Las bacterias las producen para evitar ser colonizadas por fagos o por plásmidos. Las enzimas cortan ADN de la siguiente forma:
Las enzimas de restricción se nombran con tres letras que recuerdan la bacteria donde fue caracterizada, seguidas a veces por una letra más, que identifica el serotipo y finalmente por un número romano que las  identifica en caso de que en una bacteria se hayan encontrado varias enzimas con distintas dianas. Cada enzima de restricción reconoce una secuencia de ADN determinada, la diana de la enzima. Una vez reconoce la diana cortará el ADN en las dos hebras de manera característica. Fuente

En el video se ve un plásmido, molécula de ADN circular. La enzima EcoRI la va a cortar y posteriormente aparecerá otro fragmento lineal de ADN que va a ser incorporado al plásmido porque ambos fragmentos han sido cortados con EcoRI y sus extremos son cohesivos, es decir, complementarios y mediante una segunda enzima, la ligasa, este fragmento se va a sellar con el plásmido. A esta técnica se le llama "Ingeniería genética". Los fragmentos de DNA producidos al ser digerida por EcoRI forman colas protuberantes de cadena sencilla (“extremos cohesivos”) que pueden formar puentes de hidrógeno con colas complementarias de cadena sencilla que fragmentos de DNA que provengan de cualquier otra fuente. Si se mezclan en las condiciones adecuadas, los fragmentos de DNA de dos fuentes diferentes forman moléculas recombinantes por la unión mediante puentes de hidrógeno de sus extremos cohesivos.  Los enlaces covalentes faltantes entre los extremos cohesivos de fragmentos reasociados se pueden “sellar” por la acción de las enzimas DNA ligasas, dando lugar a una molécula de DNA recombinante.

Un sistema que destruye ADN, siendo el ADN la molécula que guarda la información de la mayoría de virus y de todas las bacterias, debe reconocer el ADN propio del ADN foraneo. Para lograr distinguir lo propio de lo extraño, la bacteria tiene un sistema llamado metilación-restricción. Para cada enzima de restricción existe una metilasa, es decir, una enzima que añade grupos metilo (-CH3) a las bases nitrogenadas del ADN de la secuencia diana que corta la enzima de restricción. Al estar metilado las dianas de las enzimas de restricción del cromosoma bacteriano, éste no puede ser cortado por sus propias enzimas de restricción. Cuando los fagos o los plásmidos entran en la célula bacteriana, sus ADNs no están metilados y si llevan una secuencia diana para la enzima de restricción de la bacteria van a ser cortados por esta siendo así inutilizados.
 El nombre de enzimas de restricción alude al hecho de que restringen la posibilidad de infección por virus. Para cada enzima de restricción, una metilasa reconoce la misma secuencia que constituye el sitio de restricción y une covalentemente grupos metilo a determinadas bases del DNA en dicha secuencia. El mecanismo de defensa es el siguiente: el DNA propio de la bacteria es metilado de una forma específica, característica de cada especie bacteriana (en las secuencias reconocidas tanto por la restrictasa como por la metilasa de esa especie). La metilación de las bases impide la unión de la enzima de restricción, con lo que el DNA propio no es hidrolizado. Por el contrario, al entrar en la célula DNA de otro organismo, no metilado o con un patrón de metilación diferente, este DNA puede ser degradado por la enzima de restricción, ya que carece de los grupos metilo en la secuencia diana
 CRISPR-Cas o cuando la tijera se vuelve específica

El sistema adquirido en bacterias es el sistema CRIPR-Cas, descubierto por Francis Mójica y que recientemente ha sido reconocido por Doubda y Charpentier como un método para editar ADN.
Podíamos amplificar el número de copias de un gen gracias a la técnica de la PCR y su enzima TagPolimerasa, podíamos cortar ADN con las enzimas de restricción pegar los pedazos con la ligasa. Ahora las proteínas Cas nos permiten reescribir el ADN y correguir fallos. Ya tenenemos en nuestras manos las posibilidades de un buen editor de texto: copia, corta, pega y edita.

El blog de Curiosidades de la microbiología explica maravillosamente esta técnica revolucionaria, así que os animo a que hagáis clic en el enlace. Lo único que Manuel Sánchez no aclara suficientemente en la entrada de su blog, es cómo el sistema CRISPR-Cas hace para no cortar su propio ADN. Pues bien, para que la proteína Cas corte el ADN, el ADN invasor tiene que tener una secuencia PAM (motivo adyacente al protoespaciador, en sus siglas en inglés) colindante a su fragmento de crARN procesado
Sistema CRISPR-Cas. Fuente

Sistema CRISPR-Cas. La proteína Cas (en azul) se une al ADN que es reconocido por el crARN procesado que lleva en su interior (en violeta) y lo corta. El ADN cortado puede incorporar un ADN sintético (en verde claro) que corrija el trozo de ADN que se cortó. Lo importante para que la proteína Cas no corte el fragmento de ADN vírico que sirve de molde para producir el crARN procesado es que ese crARN procesado no lleva la secuencia PAM que si lleva el ADN del virus original. En caso de que queramos que el crARN sea sintético y sirva para localizar una secuencia de genes humanos, de pez o de bacteria tenemos que tener en cuenta que esa secuencia tiene que estar al lado de una PAM para que así Cas pueda cortar. Las secuencias PAM más habituales suelen ser  5'-NGA-3 ' o  5'-NGG-3 ', en donde N puede ser cualquier nucleótido.Fuente
Video en inglés que explica el mecanismo CRISPR-Cas
                                    Video en inglés que explica el mecanismo CRISPR-Cas subtitulado al castellano

 Esta técnica ya está dando sus primeros frutos en embriones humanos. Aunque, como técnica que es, siempre es susceptible de mejoras.

PARA SABER MÁS:

Los sistemas inmunológicos de sistemas: un cuento que parece no acabar.

No hay comentarios:

Publicar un comentario

Cada vez que lees un artículo y no dejas un comentario, alguien mata a un gatito en alguna parte del mundo...