martes, 7 de diciembre de 2021

Biopelículas: las ciudades de las bacterias

Los monocultivos líquidos y en las dos dimensiones de las placas Petri han sido el estándar de la microbiología hasta ahora. Fuente

Las enfermedades infecciosas agudas causadas por bacterias patógenas especializadas como la difteria, tétanos, peste, cólera o la tos ferina, que representaban la principal causa de muerte a principios del siglo XX, han sido controladas en la actualidad gracias a la acción de los antibióticos y de las vacunas. En su lugar, más de la mitad de las infecciones que afectan a pacientes ligeramente inmunocomprometidos son producidas por bacterias ubicuas, capaces de producir infecciones de tipo crónico, que responden pobremente a los tratamientos antibióticos y no pueden prevenirse mediante inmunización. 

Al ser bacterias ubicuas en el medioambiente son bacterias muy eficientes intercambiándose genes por transferencia horizontal, lo que además de infectar a pacientes inmunocomprometidos causan infinidad de problema al ser multirresistentes a los antibióticos usados en clínica. Ejemplos de estas infecciones son la otitis media, endocarditis de válvulas nativas, infecciones urinarias crónicas, infecciones de próstata, osteomielitis y todas las infecciones relacionadas con implantes (Costerton et al, 1995) 

El análisis directo de los implantes y tejidos de estas infecciones muestra claramente que en la mayoría de los casos la bacteria responsable de la infección crece adherida sobre el tejido o el implante formando comunidades de bacterias a las que se les ha denominado biopelículas. Dentro de la biopelícula, las bacterias están protegidas de la acción de los anticuerpos, del ataque de las células fagocíticas y de los tratamientos antimicrobianos. En este artículo se describe el papel que juegan las biopelículas en infecciones humanas persistentes (Davey et al, 2000)

El crecimiento en biopelículas representa la forma habitual de crecimiento de las bacterias en la naturaleza. Las biopelículas se definen como comunidades de microorganismos que crecen embebidos en una matriz de exopolisacáridos y adheridos a una superficie inerte o un tejido vivo. 

Arquitectura de biopelícula de mutantes de LPS PAO1 de P. aeruginosa en metacrilato de sulfopropilo (carga negativa) y en vidrio, 72 horas después de la inoculación. Fuente

Aunque la composición de la biopelícula es variable en función del sistema en estudio, en general, el componente mayoritario de la biopelícula es el agua, que puede representar hasta un 97% del contenido total. Además de agua y de las células bacterianas, la matriz de la biopelícula es un complejo formado principalmente por exopolisacáridos. En menor cantidad se encuentran otras macromoléculas como proteínas, DNA y productos diversos procedentes de la lisis de las bacterias (Branda et al, 2005).

Estructura de una biopelícula: una "ciudad" de bacterias. Fuente

En los primeros trabajos sobre la estructura de la biopelícula, una de las cuestiones que surgía con mayor reiteración era cómo las bacterias del interior de la biopelícula podían tener acceso a los nutrientes o al oxígeno. Estudios realizados utilizando microscopía confocal han mostrado que la arquitectura de la matriz de la biopelícula no es sólida y presenta canales que permiten el flujo de agua, nutrientes y oxígeno incluso hasta las zonas más profundas de la biopelícula. La existencia de estos canales no evita sin embargo, que dentro de la biopelícula podamos encontrarnos con ambientes diferentes en los que la concentración de nutrientes, pH u oxígeno es diferente. Son auténticas ciudades de bacterias (Stoodley, 2002)

Composición típica de una biopelícula ¡Solamente un 2-5% de bacterias! (Sutherland, 2001)

¿Por qué combatir biopelículas desde una perspectiva "One Health"?

En un estudio previo hemos demostrado que bacterias que se encuentran en granjas en el área de Quito se van a encontrar más tarde en los hospitales de la ciudad (Medina-Santana et al, 2021, Ortega-Paredes et al, 2020). Una investigación que tenga como objetivo desarrollar estrategias para prevenir y tratar infecciones en  animales y granjas para evitar su dispersión posterior a hospitales, debe tener en cuenta las características únicas de los biofilms. Por lo tanto, necesitamos desarrollar protocolos de desinfección eficaces para la eliminación de las biopelículas en explotaciones y medios de procesado de alimentos, ya que los biofilms pueden actuar como reservorios de agentes infecciosos.

¿Por qué combatir biopelículas dentales?

Uno de los ejemplos más claros de cómo las biopelículas afectan a la salud de las personas son las biopelículas dentales. 

Surco gingival en donde crea biopelículas Porphyromonas gingivalis. Autor

De las bacterias bucales que causan problemas de salud destaca Porphyromonas gingivalis. Esta bacteria está presente en el 80% de las periodontitis (How et al, 2016). La prevalencia de las periodontitis es alta. En los EEUU afecta al 46% de la población de manera modera y al 8.9% en su forma severa (Eke et al, 2015). Recientemente, se ha demostrado que Porphyromonas gingivales está relacionada con el desarrollo del Alzheimer (Costa et al, 2021). Por estas razones, eliminar esta bacteria de la microbiota bucal sería de interés para mejorar la salud de la población.

Moléculas de Porphyromonas gingivalis implicadas en la formación de biopelículas. Las gingipainas son unas proteinasas que se han encontrado en los cerebros de pacientes con Alzheimer. Fuente Gerits et al, 2017.

Cuando hablamos de destruir bacterias automáticamente pensamos en los antibióticos. ¿Por qué es mala idea utilizar antibióticos para eliminar bacterias bucales? si eliminamos las bacterias los epitelios de la boca pueden ser colonizados por hongos. Si las biopelículas bacterianas son difíciles de combatir, prueba con la de los hongos. Además, la batería de antifúngicos es todavía más limitada que la de los antibióticos, por lo que de aparecer resistencias todavía se pondría más fea la cosa. La otra razón es que las bacterias que causan problemas bucales están en forma de biopelículas y éstas pueden ser hasta 500 veces menos sensibles a los antibióticos que las bacterias de vida libre (planktónicas) (Maezono et al, 2011). 

¿Cómo combatir biopelículas bacterianas?

Voy a poner dos ejemplo: mediante productos de síntesis orgánica contra Pseudomonas aeruginosa y también contra P gingivalis y  bacteriófagos anti-Salmonella

Se ha encontrado que el diclorocarbazol y moléculas basadas en 2-aminoimidazol y 2 aminobenzimidazole son activas contra las biopelículas de Pseudomona aeruginosa (Liebens et al, 2014). Estos compuestos también reducen la expresión de fimbrias en P gingivalis (Wright et al, 2014).  



Para saber más:

Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol 2005; 13: 20-26    

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol 1995; 49: 711-745       

Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64: 847-867        

Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56: 187-209  

Ian W Sutherland. The biofilm matrix – an immobilized but dynamic microbial environment. Trends in Microbiology 2001, Vol 9, 5: 222-227, doi.org/10.1016/S0966-842X(01)02012-1.

Medina-Santana, J. L., Ortega-Paredes, D., de Janon, S., Burnett, E., Ishida, M., Sauders, B., Stevens, M., & Vinueza-Burgos, C. (2021). Investigating the dynamics of Salmonella contamination in Integrated Poultry Companies using a Whole Genome Sequencing approach. Poultry Science, 101611. https://doi.org/https://doi.org/10.1016/j.psj.2021.101611

Ortega-Paredes, D., de Janon, S., Villavicencio, F., Ruales, K. J., De La Torre, K., Villacís, J. E., Wagenaar, J. A., Matheu, J., Bravo-Vallejo, C., Fernández-Moreira, E., & Vinueza-Burgos, C. (2020). Broiler Farms and Carcasses Are an Important Reservoir of Multi-Drug Resistant Escherichia coli in Ecuador. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.547843

Gerits E, Verstraeten N, Michiels J. New approaches to combat Porphyromonas gingivalis biofilms. J Oral Microbiol. 2017 Mar 15;9(1):1300366. doi: 10.1080/20002297.2017.1300366. 

How KY, Song KP, Chan KG.Porphyromonas gingi-valis: an overview of periodontopathic pathogenbelow the gum line. Front Microbiol.2016;7:53.

Costa MJF, de Araújo IDT, da Rocha Alves L, da Silva RL, Dos Santos Calderon P, Borges BCD, de Aquino Martins ARL, de Vasconcelos Gurgel BC, Lins RDAU. Relationship of Porphyromonas gingivalis and Alzheimer's disease: a systematic review of pre-clinical studies. Clin Oral Investig. 2021 Mar;25(3):797-806. doi: 10.1007/s00784-020-03764-w. Epub 2021 Jan 20. PMID: 33469718.

Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, Taylor GW, Page RC, Beck JD, Genco RJ. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015 May;86(5):611-22. doi: 10.1902/jop.2015.140520. Epub 2015 Feb 17. PMID: 25688694; PMCID: PMC4460825.

Liebens V, Gerits E, Knapen WJ, Swings T, Beullens S, Steenackers HP, Robijns S, Lippell A, O'Neill AJ, Veber M, Fröhlich M, Krona A, Lövenklev M, Corbau R, Marchand A, Chaltin P, De Brucker K, Thevissen K, Cammue BP, Fauvart M, Verstraeten N, Michiels J. Identification and characterization of an anti-pseudomonal dichlorocarbazol derivative displaying anti-biofilm activity. Bioorg Med Chem Lett. 2014 Dec 1;24(23):5404-8. doi: 10.1016/j.bmcl.2014.10.039. PMID: 25453797.

Maezono H, Noiri Y, Asahi Y, Yamaguchi M, Yamamoto R, Izutani N, Azakami H, Ebisu S. Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. Antimicrob Agents Chemother. 2011 Dec;55(12):5887-92. doi: 10.1128/AAC.05169-11. Epub 2011 Sep 12. PMID: 21911560; PMCID: PMC3232792.

No hay comentarios:

Publicar un comentario

Cada vez que lees un artículo y no dejas un comentario, alguien mata a un gatito en alguna parte del mundo...